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Fine-grained domain relevance:
The degree that a term is relevant to a given domain, and the given 
domain can be broad or narrow
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Domain-specific term extraction
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Method: Overview
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Method: Offline
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Core-Anchored Semantic Graph
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Core terms: Terms associated with rich description information 
(Wikipedia article pages), e.g., Machine Learning
Fringe terms: Terms without rich description information, e.g., Few-Shot 
Learning (usually the long-tail ones)

Core terms — domain relevance is easy to judge!



Core-Anchored Semantic Graph
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Connect fringe terms to relevant core 
terms via document ranking

“Bridge domain relevance of terms 
through term relevance”



Core-Fringe Learning (CFL)
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Assume labels of core terms (domain-relevant or not) are available:
 a) propagate features of terms via term graph

b) use labels of core terms for supervision

domain-relevant!

Graph convolution:

Loss:

Domain Relevance



Hierarchical Core-Fringe Learning (HiCFL)
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Hierarchy of domains: CS -> AI -> ML

“An ML term should also be relevant to CS” => Hierarchical Learning

Global information: 

Local information: 

Loss: 

Domain relevance: 



Automatic Annotation
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Machine learning algorithms and Computer vision are categories in CS
=> Zero-shot learning is domain-relevant!



Hierarchical Positive-Unlabeled Learning
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For narrow domains like Deep Learning, a category tree might not be 
available in Wikipedia. Automatic Annotation is impractical
 Hierarchical Positive-Unlabeled (PU) Learning

For Deep Learning (DL), 
Hierarchy of domains: CS -> AI -> ML -> DL

Automatic Annotation Positive: k DL terms provided by users
Negative: non-ML terms

HiCFL



Method: Online
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Method: Online
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Experiments: Overview
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Comparison to Baselines: Compare with existing methods on Automatic 
Term Extraction

Comparison to Human Performance: Compare with human professionals

Case Studies: Case studies for ML and DL

Statistics of data. 3 broad domains, 3 narrow domains



Comparison to Baselines
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CFL outperforms baselines significantly 
 Core-anchored semantic graph and feature aggregation are helpful!
 Domain relevance can be bridged via term relevance!



Comparison to Baselines
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Hierarchical Learning is helpful!

w/ PU setting

w/o PU setting



Comparison to Human Performance
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Let humans (5 senior students majoring in CS) and machines judge 
which term in a query pair is more relevant to ML

HiCFL far outperforms human performance!



Case Studies
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Machine Learning (HiCFL) 

Important concepts such as supervised learning, deep learning are ranked 
very high

Terms ranked before 1010th are all good domain-relevant terms



Case Studies
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Deep Learning (HiCFL, PU Learning) 

Unlabeled positive terms like artificial neural network, generative 
adversarial network are ranked very high

Terms ranked 101st to 110th are all highly relevant to DL;
Terms ranked 1001st to 1010th are related to ML



Conclusion
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• We propose to measure fine-grained domain relevance — the degree 
that a term is relevant to a given domain (broad or narrow)

• To handle long-tail terms, we design a novel core-anchored semantic 
graph to bridge domain relevance of terms

• To leverage the graph and domain hierarchy, we propose hierarchical 
core-fringe learning

• To reduce human efforts, we employ automatic annotation and 
hierarchical positive-unlabeled learning

• Extensive experiments demonstrate that our methods outperform 
strong baselines and even surpass professional human performance
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Thanks!

Email: jeffhj@illinois.edu
Code and data: https://github.com/jeffhj/domain-relevance

mailto:jeffhj@illinois.edu
https://github.com/jeffhj/domain-relevance

