
Open Relation Modeling: Learning to Define Relations between Entities

Jie Huang, Kevin Chen-Chuan Chang, Jinjun Xiong, Wen-mei Hwu

University of Illinois at Urbana-Champaign University at Buffalo NVIDIA

Relationships exist widely


To represent relationships...

A fact/reasoning path in KG: (data mining, *facet-of*, database) A sentence: "we study data mining and database."

Not interpretable: cannot know exactly how they are related *Not open:* may not exist a fact or a sentence containing them

Open Relation Modeling

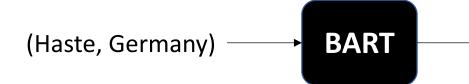
Open Relation Modeling: given two entities, generating a coherent sentence describing the relationship between them, where types of relations do not need to be pre-specified.

E.g., "*data mining* is a process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and *database* systems."

Interpretable & Open!

Open Relation Modeling: Learning from definitions

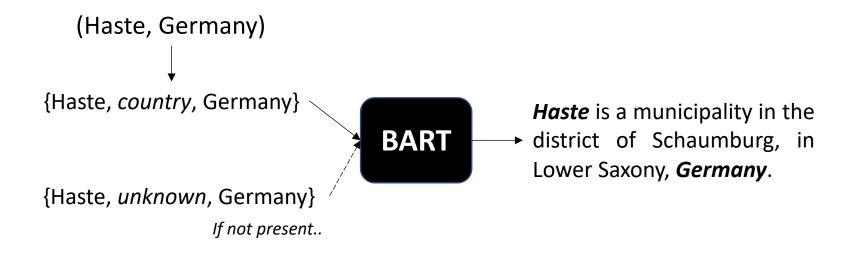
"*data mining* is a process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and *database* systems."


Definitions of entities: informative sentences that capture the most representative characteristics of entities

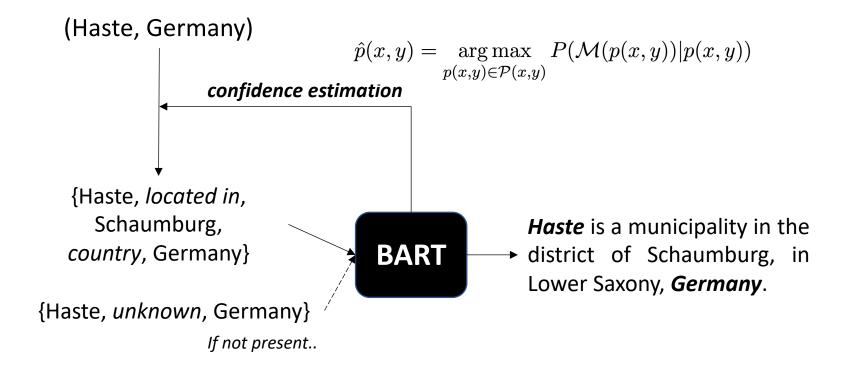
Find the relation between two entities by defining one entity in terms of the other entity!

Open Relation Modeling: Learning from definitions

- Extract entity pairs from definitions of entities
- Fine-tune BART (Lewis et al., 2020a) to reproduce the definitions of entities with extracted entity pairs as input


Haste is a municipality in (Haste, Schaumburg) the district of Schaumburg, (Haste, Germany) in Lower Saxony, Germany. ...

Haste is a municipality in
→ the district of Schaumburg, in Lower Saxony, *Germany*.


=> RelationBART-Vanilla

Reasoning Path-Enriched Relation Modeling

Augment the input with the shortest reasoning path => RelationBART-SP

Open Relation Modeling with Reasoning Path Selection

Select the best reasoning path with confidence estimation => **RelationBART-SP/MP + PS**

Experiments: Dataset

	train	dev	tes	st	test*
number	5,434,158	27,43	1 55,2	26	7,302
	l 1-hop	2-hop	3-hop	>	3-hop
ratio (%)) 35.14	17.80	7.33		39.73

Entity pairs -> First sentences of Wikipedia pages

test* denotes a filtered sub-test set with a higher quality

Experiments: Results

	BL	R-L	MT	BS
DefBART	25.98	47.38	22.39	83.41
RelationBART-Vanilla (w/o PT)	34.70	59.57	28.85	88.01
RelationBART-SP (w/o PT)	35.48	60.55	29.40	88.43
RelationBART-SP (w/o PT) + PS	38.62	62.60	31.07	89.05
RelationBART-MP (w/o PT) + PS	40.52	63.73	32.06	89.53
RelationBART-Vanilla	35.45	59.92	29.33	88.25
RelationBART-SP	36.58	61.15	30.04	88.75
RelationBART-SP + PS	39.93	63.32	31.80	89.39
RelationBART-MP + PS	41.43	64.15	32.45	89.64
RelationBART-Vanilla (Large)	36.53	60.54	29.90	88.50
RelationBART-SP (Large)	37.65	61.34	30.57	88.89
RelationBART-SP (Large) + PS	41.21	63.56	32.41	89.53
RelationBART-MP (Large) + PS	41.46	64.36	32.62	89.79

	Rating (1-4)
RelationBART-Vanilla (Large)	2.67
RelationBART-SP (Large)	2.82
RelationBART-MP (Large) + PS	3.01

Quantitative

Qualitative

Refer to the paper for more results and details.

Experiments: Generation Examples

Input	Reasoning Path (Encoding)	Output
Romeries [reference]		Romeries is a commune in the Nord department in northern France.
(Romeries, France)	Nord; country: France [selected]	Romeries is a commune in the Somme department in Hauts-de-France in northern France. Romeries is a commune in the Nord department in northern France.
	Romeries; shares border with: Solesmes; country: France [NOT selected]	Romeries is a commune in the Marne department in north-eastern France.
data mining [reference]	-	Data mining is a process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems.
		Data mining is a subfield of machine learning and artificial intelligence concerned with the collection, processing, and analysis of large amounts of data.
(data mining, database)	data mining; facet of: database	Data mining is the process of extracting information from a data set, such as a database.
		Data mining is the process of collecting, processing, and analyzing large amounts of data in the form of statistics and machine learning.
(data mining, data)	data mining; facet of: machine learning; partially coin- cident with: statistics; studies: data	Data mining is the process of extracting useful information from data.
evaluation [reference]	-	Evaluation is a systematic determination of a subject's merit, worth and significance, using criteria governed by a set of standards.
(evaluation, machine learn- ing)	evaluation; unknown: machine learning	In computer science, evaluation is the process of evaluating a machine learning algorithm to determine whether the algorithm is performing well.
(evaluation, algorithm)	evaluation; unknown: algorithm	In computer science, evaluation is the process of evaluating an algorithm to determine whether it is correct.
(evaluation, robotics)		In robotics, evaluation is the process of determining whether or not a particular component of a system is working properly.
neering)		In computer science and software engineering, evaluation is the process of determining whether a particular feature or feature should be added to a product or service.
(evaluation, computer secu- rity)	- evaluation; unknown: computer security	In computer security, evaluation is the process of determining the security of a computer system.

Conclusion

- We introduce *open relation modeling* generating coherent sentences describing entity relationships;
- To solve this task, we propose to teach machines to generate definitionlike relation descriptions by letting them learn from producing definitions conditioned on extracted entity pairs;
- We apply PLMs and design reasoning path-enriched PLMs for open relation modeling;
- Experimental results show that our methods can generate sentences that well capture entity relationships.

Email: jeffhj@illinois.edu Code and data: https://github.com/jeffhj/open-relation-modeling

Thanks!

