DimonGen: Diversified Generative Commonsense Reasoning for Explaining Concept Relationships

Chenzhengyi Liu*, **Jie Huang***, Kerui Zhu, Kevin Chen-Chuan Chang University of Illinois at Urbana-Champaign



Concept Relationships

Concept Relationships

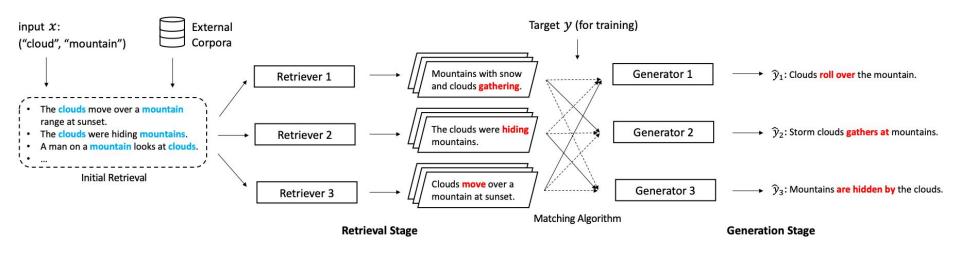
dog <=?=> sheep

A dog attacks a sheep?

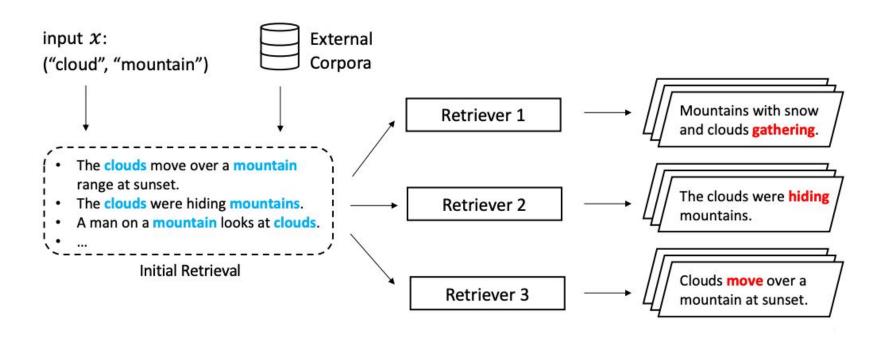
A dog herds a flock of sheep?

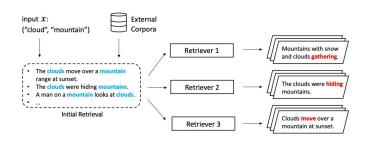
DimonGen: Diversified Generative Commonsense Reasoning

(dog, sheep)


- A dog herds a flock of sheep together.
- Dogs guard the sheep on the mountain pasture.
- The dogs are attacking a sheep.

Input: two concepts


Output: sentences describing concept relationships in various everyday scenarios

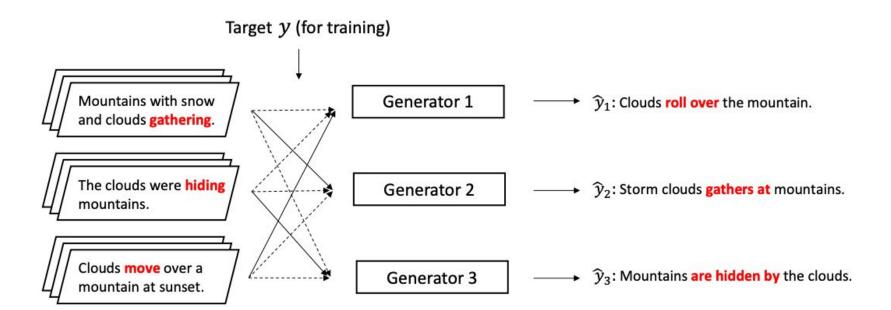

Methods

MoREE: Mixture of Retrieval-Enhanced Experts

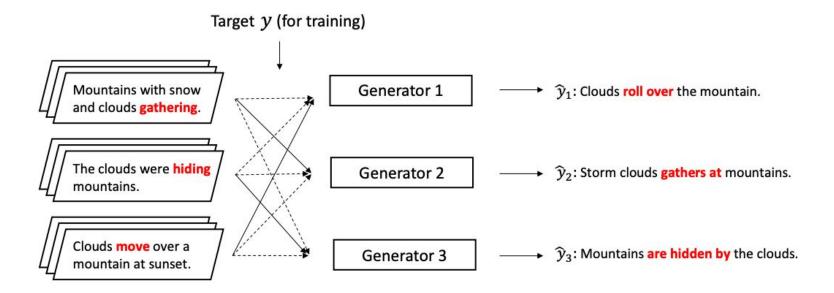
Retrieval Stage

Retrieval Stage

identifier concept pair sentence

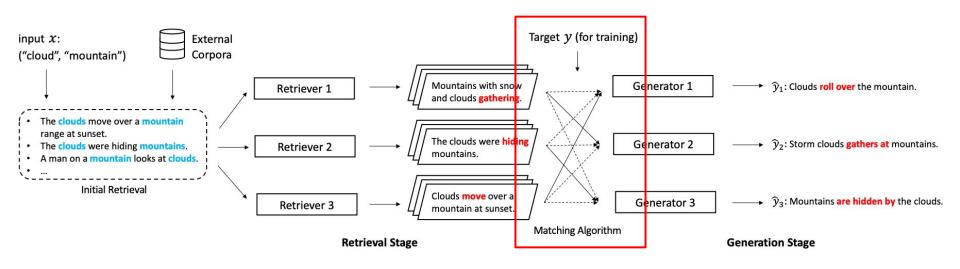

$$oldsymbol{x}_{ji}^{\mathrm{re}} = oldsymbol{z}_i ext{ [CLS] } oldsymbol{x} ext{ [SEP] } oldsymbol{s}_j ext{ [SEP]}$$

$$\mathcal{L}_c = \mathbb{E}_{(oldsymbol{x}_j^{ ext{re}}, y_c)}[\min_i - \log p(y_c | oldsymbol{x}_{ji}^{ ext{re}}; heta)]$$


regularization term (Jenson Shannon divergence)
$$\mathcal{L}_r = \frac{1}{n} \sum_{i=1}^n D_{\mathrm{KL}}(P_i || \frac{1}{n} \sum_{i} P_j)$$

$$\mathcal{L} = \mathcal{L}_c + \alpha \mathcal{L}_r$$

Generation Stage



Generation Stage

$$oldsymbol{x}_i^{ ext{gen}} = oldsymbol{z}_i ext{ [CLS] } oldsymbol{x} ext{ [SEP] } oldsymbol{s}_1^i ext{ [SEP] } \dots oldsymbol{s}_k^i$$

Matching Algorithm

$$oldsymbol{y}_i^{ ext{target}} = rg \max_{oldsymbol{y}_j \in \mathcal{Y}} \quad p(oldsymbol{y}_j | oldsymbol{x}_i^{ ext{gen}}; heta)$$

Experiments

Dataset

		train		dev		test
Number		15,263		665		1,181
Unseen ratio (%)		-		91.73		98.31
Avg. ref. number		4.13		3.71		3.38
	3-targe	ets 4-tar		gets 5-		targets
ratio (%)	34.76		24.16		41.07	

Based on CommonGen (Lin et al., 2020) and ConceptNet (Speer et al., 2017)

(dog, sheep)

- A dog herds a flock of sheep together.
- Dogs guard the sheep on the mountain pasture.
- The dogs are attacking a sheep.

Automatic Evaluation

Method		Quality (top-k) ↑			Pairwise diversity \downarrow		Corpus diversity \(\ \)	
8	Wiethod		ROUGE-1	S. R.	self-B4	self-Rl	Entropy-4	Distinct-4
Sampling	Top_k sampling	14.97	40.29	87.75	38.54	61.27	9.50	74.53
methods	Top_p sampling	15.35	40.17	87.30	33.58	56.57	9.60	78.22
methous	Typical sampling	15.26	40.42	87.60	35.05	57.99	9.58	77.36
MoE	MoE	16.70	40.88	87.84	30.86	51.16	9.49	75.87
methods	MoKGE	16.60	41.34	88.37	29.73	50.02	9.58	79.12
inculous	MoREE (ours)	19.06	43.17	91.69	24.85	46.85	9.70	83.62

Automatic Evaluation

Method		Quality (top-k) ↑			Pairwise diversity \downarrow		Corpus diversity ↑	
	BLE		ROUGE-1	S. R.	self-B4	self-Rl	Entropy-4	Distinct-4
Sampling	Top_k sampling	14.97	40.29	87.75	38.54	61.27	9.50	74.53
Sampling methods	Top_p sampling	15.35	40.17	87.30	33.58	56.57	9.60	78.22
methous	Typical sampling	15.26	40.42	87.60	35.05	57.99	9.58	77.36
MoE	MoE	16.70	40.88	87.84	30.86	51.16	9.49	75.87
methods	MoKGE	16.60	41.34	88.37	29.73	50.02	9.58	79.12
methous	MoREE (ours)	19.06	43.17	91.69	24.85	46.85	9.70	83.62

Human Evaluation

Method	Quality Diversity		Gra & Flu	
DimonGen	4.70	4.25	4.67	
Typical	3.65	3.12	4.35	
MoKGE	3.77	3.65	4.63	
MoREE (ours)	4.21	3.94	4.61	

Human Evaluation

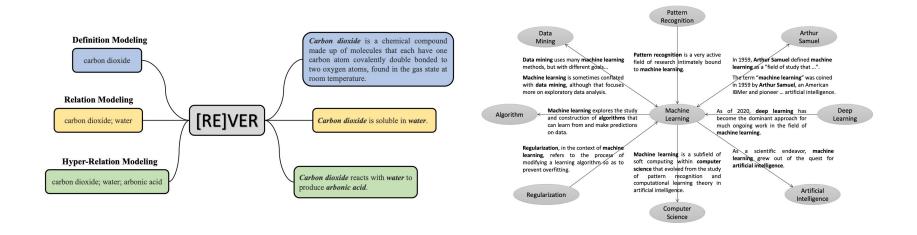
Method	Quality Diversity		Gra & Flu
DimonGen	4.70	4.25	4.67
Typical	3.65	3.12	4.35
MoKGE	3.77	3.65	4.63
MoREE (ours)	4.21	3.94	4.61

Results

Method		Quality (top-k) ↑			Pairwise diversity \downarrow		Corpus diversity \(\ \)	
8	Method	BLEU-4	ROUGE-1	S. R.	self-B4	self-Rl	Entropy-4	Distinct-4
Sampling	Top_k sampling	14.97	40.29	87.75	38.54	61.27	9.50	74.53
Sampling methods	Top_p sampling	15.35	40.17	87.30	33.58	56.57	9.60	78.22
memous	Typical sampling	15.26	40.42	87.60	35.05	57.99	9.58	77.36
MoE	MoE	16.70	40.88	87.84	30.86	51.16	9.49	75.87
methods	MoKGE	16.60	41.34	88.37	29.73	50.02	9.58	79.12
inctitous	MoREE (ours)	19.06	43.17	91.69	24.85	46.85	9.70	83.62

Method	Quality	Diversity	Gra & Flu	
DimonGen	4.70	4.25	4.67	
Typical	3.65	3.12	4.35	
MoKGE	3.77	3.65	4.63	
MoREE (ours)	4.21	3.94	4.61	

Ablation Study


Method	Q	uality (top-k)	\uparrow	Pairwise o	diversity \downarrow	Corpus diversity ↑	
Wiethou	BLEU-4	ROUGE-1	S. R.	self-B4	self-Rl	Entropy-4	Distinct-4
MoREE	19.06	43.17	91.69	24.85	46.85	9.70	83.62
w/o mixture of retrievers	16.91	41.84	91.04	27.77	50.43	9.54	80.69
w/o regularization term	18.57	42.88	91.87	29.40	51.45	9.55	79.31
w/o matching algorithm	16.64	41.78	91.27	28.98	50.96	9.48	77.47

Generation Examples

Input Method	("dog", "sheep")	("airport", "way")			
Typical sampling	 A man is walking along a road with a dog and two sheep. A group of sheep and a dog are grazing on the grass. A man and a dog are standing in a field with sheep. 	 A plane is on its way to an airport. An airplane is making its way down the runway at an airport. A motorcade makes its way down the runway at an airport. 			
MoKGE	 a dog is eating a sheep. Sheep and dogs are grazing in a meadow. A dog is walking around a field with sheep. 	 a woman makes her way through the airport. passengers make their way through the airport. A woman is making her way through an airport.			
MoREE (ours)	 The dog is herding sheep with a farmer nearby. A dog is chasing a flock of sheep. The dog follows the sheep through the gate. 	 passengers at an airport are carrying their luggage to and from the terminal as they make their way to their destinations. A plane is on its way to the airport. A plane is making its way down the runway at an airport. 			
DimonGen (Gold)	 A dog herds a flock of sheep together. dogs guard the sheep on the mountain pasture. The dogs are attacking a sheep. 	 People make their way off a plane toward the airport. There is a gray and red plane on the run way at the airport. US Airways plane moves on a taxi way near its gate at an airport. 			

Related Works on Describing Entity/Concept Relationships

- DEER: Descriptive Knowledge Graph for Explaining Entity Relationships. EMNLP 2022.
- Open Relation Modeling: Learning to Define Relations between Entities. Findings of ACL 2022.
- ☐ [RE]VER: Learning Natural Language Representations for Verbalizing Entities and Relations. 2023.

Email: cl115@illinois.edu, jeffhj@illinois.edu

Twitter: @jefffhj

Thanks!