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Semantic Capacity

Artificial Intelligence

What is the Semantic Capacity
SC(·) of “Artificial Intelligence”?

• SC(Artificial Intelligence) > SC(Greedy Algorithm)

• SC(Artificial Intelligence) < SC(Computer Science)

• SC(Artificial Intelligence) > SC(Machine Learning)
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Semantic Capacity

Research Profiling

https://www.elsevier.com/solutions/elsevier-fingerprint-engine
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Semantic Capacity

https://en.wikipedia.org/wiki/Hyponymy_and_hypernymy

>

Hypernym-Hyponym Discovery

>
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Semantic Capacity?

• If we can find all hypernym-hyponym pairs -> tree
=> semantic capacity can be solved to some extent

• However…
• Hearst patterns (Hearst, COLING'1992, with extended 

patterns) can only find 2.5% (35/1393) pairs
=> impossible to measure semantic capacity of terms 
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Observation

Artificial Intelligence associates with:
1) many terms, e.g., AI terms
2) broad terms, e.g., CS, CV, ML, …

r(AI, ML) > r(AI, SVM)

Semantic Capacity Association Hypothesis:
Terms with higher semantic capacity associate with 
1) more terms
2) terms with higher semantic capacity than lower ones
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Normalized Pointwise Mutual Information

Range from -1 to 1:
• -1: never co-occur
• 0: occur independently
• 1: co-occur completely

Association
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Hyperbolic Geometry

http://inspirehep.net/record/1355197/plots

Poincaré disk
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Why Hyperbolic Space?

• Volumes grow exponentially with radius
• Number of terms grows exponentially as semantic 

capacity gets lower

Poincaré Embedding

Maximillian Nickel and Douwe Kiela. 2017. Poincaré embeddings for learning hierarchical representations. In NIPS. 6338–6347.

• The distance of points increases exponentially 
as they are closer to the boundary

more

higher
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Lorentz Model

Maximillian Nickel and Douwe Kiela. 2018. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry. In ICML. 3776–3785.

• An equivalent model for hyperbolic space:
• Perform Riemannian optimization more efficiently 
• Distance function avoids numerical instabilities

• Lorentz -> Poincaré

• Poincaré -> Lorentz
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Lorentz Model with NPMI
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Framework
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Experiments

• Hypernym-hyponym pairs in three scientific domains
• Abstracts of papers are used to find the co-occurrences

between terms
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Baselines

• Popularity: 
• Poincaré GloVe (Tifrea et al., ICLR'2019)

Variants: 
• Euclidean Model (Co-occurrence)
• Euclidean Model (NPMI)
• Lorentz Model (Co-occurrences)
• Lorentz Model (NPMI)

Human Annotation by Layman, Professional, Expert 
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Evaluation on Offline Construction

The Lorentz model with NPMI outperforms all the baselines significantly

Hearst patterns (with extended patterns) can only find 
2.5% (35/1393) pairs
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Evaluation on Online Query

The Lorentz model with NPMI can achieve performance comparable to
professionals, with a small margin to experts, and much better than laymen
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Conclusion

• Semantic capacity: a value that measures the semantic 
scope of terms

• Semantic capacity association hypothesis => the Lorentz 
model with NPMI

• Two-step model: offline construction and online query

• Experiments on three scientific domains
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Thanks!


