Exploring Semantic Capacity of Terms

Jie Huang, Zilong Wang, Kevin Chen-Chuan Chang, Wen-mei Hwu, Jinjun Xiong

University of Illinois at Urbana-Champaign University of California at San Diego IBM Thomas J. Watson Research Center IBM-Illinois Center for Cognitive Computing Systems Research (C3SR)

Semantic Capacity

Artificial Intelligence

What is the **Semantic Capacity** $SC(\cdot)$ of "Artificial Intelligence"?

- SC(Artificial Intelligence) < SC(Computer Science)
- SC(Artificial Intelligence) > SC(Machine Learning)
- SC(Artificial Intelligence) > SC(Greedy Algorithm)

Semantic Capacity

Research Profiling

Engineering & Materials Science

https://www.elsevier.com/solutions/elsevier-fingerprint-engine

Semantic Capacity

Hypernym-Hyponym Discovery

https://en.wikipedia.org/wiki/Hyponymy_and_hypernymy

Semantic Capacity?

If we can find all hypernym-hyponym pairs -> tree
=> semantic capacity can be solved to some extent

- However...
 - Hearst patterns (Hearst, COLING'1992, with extended patterns) can only find 2.5% (35/1393) pairs
 => impossible to measure semantic capacity of terms

Observation

Artificial Intelligence associates with:

- 1) many terms, e.g., Al terms
- 2) broad terms, e.g., CS, CV, ML, ... r(AI, ML) > r(AI, SVM)

Semantic Capacity Association Hypothesis:

Terms with higher semantic capacity associate with

- 1) *more* terms
- 2) terms with *higher* semantic capacity than lower ones

Normalized Pointwise Mutual Information

$$npmi(x,y) = -\log\frac{p(x,y)}{p(x)p(y)} / \log p(x,y)$$

Range from -1 to 1:

- -1: never co-occur
- 0: occur independently
- 1: co-occur completely

Hyperbolic Geometry

Poincaré disk

Poincaré Embedding

$$d_p(\mathbf{x}, \mathbf{y}) = \operatorname{arcosh}\left(1 + 2\frac{\|\mathbf{x} - \mathbf{y}\|^2}{(1 - \|\mathbf{x}\|^2)(1 - \|\mathbf{y}\|^2)}\right)$$

• The distance of points increases exponentially as they are closer to the boundary

Why Hyperbolic Space?

- Volumes grow exponentially with radius
- Number of terms grows exponentially as semantic capacity gets lower

Maximillian Nickel and Douwe Kiela. 2017. Poincaré embeddings for learning hierarchical representations. In NIPS. 6338–6347.

Lorentz Model

- An equivalent model for hyperbolic space:
 - Perform Riemannian optimization more efficiently
 - Distance function avoids numerical instabilities

• Poincaré -> Lorentz

$$\ell(x_1,\ldots,x_n) = \frac{(1+\|\mathbf{x}\|^2, 2x_1,\ldots,2x_n)}{1-\|\mathbf{x}\|^2}$$

• Lorentz -> Poincaré

$$\ell^{-1}(x_0, x_1, \dots, x_n) = \frac{(x_1, \dots, x_n)}{x_0 + 1}$$

Maximillian Nickel and Douwe Kiela. 2018. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry. In ICML. 3776–3785.

Lorentz Model with NPMI

$$\mathcal{L}(\Theta) = -\sum_{(x,y)\in\mathcal{D}} npmi(x,y) \cdot \log s(x,y)$$
$$\mathcal{D} = \{(x,y) : npmi(x,y) > \delta\} \quad s(x,y) = \frac{\exp(-d_{\ell}(\mathbf{x},\mathbf{y}))}{\sum_{y'\in\mathcal{N}(x)}\exp(-d_{\ell}(\mathbf{x},\mathbf{y}'))}$$
$$\min_{\Theta} \mathcal{L}(\Theta) \quad \text{s.t. } \forall \boldsymbol{\theta}_i \in \Theta : \boldsymbol{\theta}_i \in \mathbf{H}^n$$
$$\mathbf{SC}(x) = \frac{1}{\|\ell^{-1}(\mathbf{x})\|}$$

Framework

Experiments

- Hypernym-hyponym pairs in three scientific domains
- Abstracts of papers are used to find the co-occurrences between terms

	nun	nber of p	oairs	number of terms			
	all	top 1	top 2	all	top 1	top 2	
Computer Science	782	93	325	651	11	109	
Physics	1393	105	452	1090	14	127	
Mathematics	1070	158	399	826	18	153	

Baselines

- Popularity: $SC(x) \propto freq(x)$
- Poincaré GloVe (Tifrea et al., ICLR'2019)

Variants:

- Euclidean Model (Co-occurrence)
- Euclidean Model (NPMI)
- Lorentz Model (Co-occurrences)
- Lorentz Model (NPMI)

Human Annotation by Layman, Professional, Expert

Evaluation on Offline Construction

	Computer Science			Physics			Mathematics			
	all	top 1	top 2	all	top 1	top 2	all	top 1	top 2	
Popularity	65.47	64.52	65.54	62.67	55.24	54.42	66.45	68.99	62.66	
Poincaré GloVe	65.47	70.97	67.38	61.45	56.19	54.87	63.27	68.35	64.41	
Euclidean Model (Co-occurrences)	69.44	71.69	70.77	67.77	54.29	60.40	68.82	78.06	69.42	
Euclidean Model (NPMI)	71.00	73.92	75.46	58.15	47.62	53.76	64.95	65.19	65.79	
Lorentz Model (Co-occurrences)	69.57	73.12	72.00	67.34	70.48	62.39	68.66	75.95	68.92	
Lorentz Model (NPMI)	74.25	88.39	77.11	72.52	82.48	74.07	72.34	80.76	73.86	
The Lorentz model with NPMI outperforms all the baselines significantly Hearst patterns (with extended patterns) can only find 2.5% (35/1393) pairs										

Evaluation on Online Query

	Computer Science		Physics			Mathematics			
	all	top 1	top 2	all	top 1	top 2	all	top 1	top 2
Human Annotation (Layman)	64.33	75.31	68.27	58.67	56.14	58.82	62.00	67.62	64.26
Human Annotation (Professional)	78.33	82.72	80.32	79.67	91.23	81.96	80.00	91.43	83.53
Human Annotation (Expert)	79.33	86.42	82.73	83.00	94.74	87.06	82.33	83.81	84.34
Lorentz Model (NPMI)	77.40	92.59	84.09	78.20	91.58	79.29	76.20	80.00	79.28

The Lorentz model with NPMI can achieve performance comparable to professionals, with a small margin to experts, and much better than laymen

Conclusion

- Semantic capacity: a value that measures the semantic scope of terms
- Semantic capacity association hypothesis => the Lorentz model with NPMI
- **Two-step model:** offline construction and online query
- Experiments on three scientific domains

Thanks!